Copied to
clipboard

G = C33.5D9order 486 = 2·35

5th non-split extension by C33 of D9 acting via D9/C3=S3

metabelian, supersoluble, monomial

Aliases: C33.5D9, C27⋊(C3×S3), C3⋊(C27⋊C6), C27⋊S34C3, C27⋊C34S3, (C3×C27)⋊5C6, C9.6(C3×D9), (C3×C9).5D9, (C32×C9).20S3, C32.19(C3×D9), C32.12(C9⋊S3), (C3×C27⋊C3)⋊2C2, C3.7(C3×C9⋊S3), C9.4(C3×C3⋊S3), (C3×C9).61(C3×S3), (C3×C9).12(C3⋊S3), SmallGroup(486,162)

Series: Derived Chief Lower central Upper central

C1C3×C27 — C33.5D9
C1C3C9C3×C9C3×C27C3×C27⋊C3 — C33.5D9
C3×C27 — C33.5D9
C1

Generators and relations for C33.5D9
 G = < a,b,c,d,e | a3=b3=c3=e2=1, d9=c, ab=ba, dad-1=eae=ac=ca, bc=cb, bd=db, ebe=b-1, cd=dc, ece=c-1, ede=c-1d8 >

Subgroups: 548 in 72 conjugacy classes, 26 normal (13 characteristic)
C1, C2, C3, C3, C3, S3, C6, C9, C9, C9, C32, C32, D9, C3×S3, C3⋊S3, C27, C27, C3×C9, C3×C9, C3×C9, C33, D27, C3×D9, C9⋊S3, C3×C3⋊S3, C3×C27, C3×C27, C27⋊C3, C27⋊C3, C32×C9, C27⋊C6, C27⋊S3, C3×C9⋊S3, C3×C27⋊C3, C33.5D9
Quotients: C1, C2, C3, S3, C6, D9, C3×S3, C3⋊S3, C3×D9, C9⋊S3, C3×C3⋊S3, C27⋊C6, C3×C9⋊S3, C33.5D9

Smallest permutation representation of C33.5D9
On 81 points
Generators in S81
(2 11 20)(3 21 12)(5 14 23)(6 24 15)(8 17 26)(9 27 18)(28 37 46)(29 47 38)(31 40 49)(32 50 41)(34 43 52)(35 53 44)(55 64 73)(56 74 65)(58 67 76)(59 77 68)(61 70 79)(62 80 71)
(1 42 63)(2 43 64)(3 44 65)(4 45 66)(5 46 67)(6 47 68)(7 48 69)(8 49 70)(9 50 71)(10 51 72)(11 52 73)(12 53 74)(13 54 75)(14 28 76)(15 29 77)(16 30 78)(17 31 79)(18 32 80)(19 33 81)(20 34 55)(21 35 56)(22 36 57)(23 37 58)(24 38 59)(25 39 60)(26 40 61)(27 41 62)
(1 10 19)(2 11 20)(3 12 21)(4 13 22)(5 14 23)(6 15 24)(7 16 25)(8 17 26)(9 18 27)(28 37 46)(29 38 47)(30 39 48)(31 40 49)(32 41 50)(33 42 51)(34 43 52)(35 44 53)(36 45 54)(55 64 73)(56 65 74)(57 66 75)(58 67 76)(59 68 77)(60 69 78)(61 70 79)(62 71 80)(63 72 81)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81)
(1 18)(2 17)(3 16)(4 15)(5 14)(6 13)(7 12)(8 11)(9 10)(19 27)(20 26)(21 25)(22 24)(28 67)(29 66)(30 65)(31 64)(32 63)(33 62)(34 61)(35 60)(36 59)(37 58)(38 57)(39 56)(40 55)(41 81)(42 80)(43 79)(44 78)(45 77)(46 76)(47 75)(48 74)(49 73)(50 72)(51 71)(52 70)(53 69)(54 68)

G:=sub<Sym(81)| (2,11,20)(3,21,12)(5,14,23)(6,24,15)(8,17,26)(9,27,18)(28,37,46)(29,47,38)(31,40,49)(32,50,41)(34,43,52)(35,53,44)(55,64,73)(56,74,65)(58,67,76)(59,77,68)(61,70,79)(62,80,71), (1,42,63)(2,43,64)(3,44,65)(4,45,66)(5,46,67)(6,47,68)(7,48,69)(8,49,70)(9,50,71)(10,51,72)(11,52,73)(12,53,74)(13,54,75)(14,28,76)(15,29,77)(16,30,78)(17,31,79)(18,32,80)(19,33,81)(20,34,55)(21,35,56)(22,36,57)(23,37,58)(24,38,59)(25,39,60)(26,40,61)(27,41,62), (1,10,19)(2,11,20)(3,12,21)(4,13,22)(5,14,23)(6,15,24)(7,16,25)(8,17,26)(9,18,27)(28,37,46)(29,38,47)(30,39,48)(31,40,49)(32,41,50)(33,42,51)(34,43,52)(35,44,53)(36,45,54)(55,64,73)(56,65,74)(57,66,75)(58,67,76)(59,68,77)(60,69,78)(61,70,79)(62,71,80)(63,72,81), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81), (1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10)(19,27)(20,26)(21,25)(22,24)(28,67)(29,66)(30,65)(31,64)(32,63)(33,62)(34,61)(35,60)(36,59)(37,58)(38,57)(39,56)(40,55)(41,81)(42,80)(43,79)(44,78)(45,77)(46,76)(47,75)(48,74)(49,73)(50,72)(51,71)(52,70)(53,69)(54,68)>;

G:=Group( (2,11,20)(3,21,12)(5,14,23)(6,24,15)(8,17,26)(9,27,18)(28,37,46)(29,47,38)(31,40,49)(32,50,41)(34,43,52)(35,53,44)(55,64,73)(56,74,65)(58,67,76)(59,77,68)(61,70,79)(62,80,71), (1,42,63)(2,43,64)(3,44,65)(4,45,66)(5,46,67)(6,47,68)(7,48,69)(8,49,70)(9,50,71)(10,51,72)(11,52,73)(12,53,74)(13,54,75)(14,28,76)(15,29,77)(16,30,78)(17,31,79)(18,32,80)(19,33,81)(20,34,55)(21,35,56)(22,36,57)(23,37,58)(24,38,59)(25,39,60)(26,40,61)(27,41,62), (1,10,19)(2,11,20)(3,12,21)(4,13,22)(5,14,23)(6,15,24)(7,16,25)(8,17,26)(9,18,27)(28,37,46)(29,38,47)(30,39,48)(31,40,49)(32,41,50)(33,42,51)(34,43,52)(35,44,53)(36,45,54)(55,64,73)(56,65,74)(57,66,75)(58,67,76)(59,68,77)(60,69,78)(61,70,79)(62,71,80)(63,72,81), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81), (1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10)(19,27)(20,26)(21,25)(22,24)(28,67)(29,66)(30,65)(31,64)(32,63)(33,62)(34,61)(35,60)(36,59)(37,58)(38,57)(39,56)(40,55)(41,81)(42,80)(43,79)(44,78)(45,77)(46,76)(47,75)(48,74)(49,73)(50,72)(51,71)(52,70)(53,69)(54,68) );

G=PermutationGroup([[(2,11,20),(3,21,12),(5,14,23),(6,24,15),(8,17,26),(9,27,18),(28,37,46),(29,47,38),(31,40,49),(32,50,41),(34,43,52),(35,53,44),(55,64,73),(56,74,65),(58,67,76),(59,77,68),(61,70,79),(62,80,71)], [(1,42,63),(2,43,64),(3,44,65),(4,45,66),(5,46,67),(6,47,68),(7,48,69),(8,49,70),(9,50,71),(10,51,72),(11,52,73),(12,53,74),(13,54,75),(14,28,76),(15,29,77),(16,30,78),(17,31,79),(18,32,80),(19,33,81),(20,34,55),(21,35,56),(22,36,57),(23,37,58),(24,38,59),(25,39,60),(26,40,61),(27,41,62)], [(1,10,19),(2,11,20),(3,12,21),(4,13,22),(5,14,23),(6,15,24),(7,16,25),(8,17,26),(9,18,27),(28,37,46),(29,38,47),(30,39,48),(31,40,49),(32,41,50),(33,42,51),(34,43,52),(35,44,53),(36,45,54),(55,64,73),(56,65,74),(57,66,75),(58,67,76),(59,68,77),(60,69,78),(61,70,79),(62,71,80),(63,72,81)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)], [(1,18),(2,17),(3,16),(4,15),(5,14),(6,13),(7,12),(8,11),(9,10),(19,27),(20,26),(21,25),(22,24),(28,67),(29,66),(30,65),(31,64),(32,63),(33,62),(34,61),(35,60),(36,59),(37,58),(38,57),(39,56),(40,55),(41,81),(42,80),(43,79),(44,78),(45,77),(46,76),(47,75),(48,74),(49,73),(50,72),(51,71),(52,70),(53,69),(54,68)]])

54 conjugacy classes

class 1  2 3A3B3C3D3E3F3G3H6A6B9A···9I9J···9O27A···27AA
order1233333333669···99···927···27
size1812222336681812···26···66···6

54 irreducible representations

dim1111222222226
type+++++++
imageC1C2C3C6S3S3C3×S3D9C3×S3D9C3×D9C3×D9C27⋊C6
kernelC33.5D9C3×C27⋊C3C27⋊S3C3×C27C27⋊C3C32×C9C27C3×C9C3×C9C33C9C32C3
# reps11223166231269

Matrix representation of C33.5D9 in GL8(𝔽109)

450000000
045000000
00100000
00010000
00747410810800
0074741000
0042420001
00242400108108
,
419000000
7567000000
00100000
00010000
00001000
00000100
00000010
00000001
,
10000000
01000000
0010810000
0010800000
0035350100
00353910810800
0043420001
00422400108108
,
419000000
7567000000
003535108100
00747410710800
0073730010
0066105001
0071441000
001037118000
,
68100000000
541000000
0067671048600
002424869100
006650000
0041141081800
006682505082
00737359283259

G:=sub<GL(8,GF(109))| [45,0,0,0,0,0,0,0,0,45,0,0,0,0,0,0,0,0,1,0,74,74,42,24,0,0,0,1,74,74,42,24,0,0,0,0,108,1,0,0,0,0,0,0,108,0,0,0,0,0,0,0,0,0,0,108,0,0,0,0,0,0,1,108],[41,75,0,0,0,0,0,0,9,67,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,108,108,35,35,43,42,0,0,1,0,35,39,42,24,0,0,0,0,0,108,0,0,0,0,0,0,1,108,0,0,0,0,0,0,0,0,0,108,0,0,0,0,0,0,1,108],[41,75,0,0,0,0,0,0,9,67,0,0,0,0,0,0,0,0,35,74,73,6,71,103,0,0,35,74,73,6,44,71,0,0,108,107,0,105,1,18,0,0,1,108,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[68,5,0,0,0,0,0,0,100,41,0,0,0,0,0,0,0,0,67,24,6,41,6,73,0,0,67,24,65,14,6,73,0,0,104,86,0,108,82,59,0,0,86,91,0,18,50,28,0,0,0,0,0,0,50,32,0,0,0,0,0,0,82,59] >;

C33.5D9 in GAP, Magma, Sage, TeX

C_3^3._5D_9
% in TeX

G:=Group("C3^3.5D9");
// GroupNames label

G:=SmallGroup(486,162);
// by ID

G=gap.SmallGroup(486,162);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,1190,1520,824,867,8104,208,11669]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=e^2=1,d^9=c,a*b=b*a,d*a*d^-1=e*a*e=a*c=c*a,b*c=c*b,b*d=d*b,e*b*e=b^-1,c*d=d*c,e*c*e=c^-1,e*d*e=c^-1*d^8>;
// generators/relations

׿
×
𝔽